000 | 01411 a2200229 4500 | ||
---|---|---|---|
010 | _a2008006276 | ||
020 | _a9780521898850 | ||
050 | 0 | 0 | _aQA9.5 |
082 | 0 | 4 | _a511.6 |
090 |
_c32082 _d32082 |
||
100 | 1 | _aHindley, J. Roger | |
546 | _aeng | ||
245 | 1 | 0 |
_aLambda-calculus and combinators: An introduction _cJ. Roger Hindley, Jonathan P. Seldin |
260 |
_aCambridge ; _aNew York : _bCambridge University Press, _c2008. |
||
300 |
_axi, 345 p. : _bill. ; _c24 cm. |
||
500 | _aBibliografie p. 323 Index p. 337 | ||
505 | 0 | _aPreface; 1. The lambda-calculus; 2. Combinatory logic; 3. The power of lambda and combinations; 4. Representing the computable functions; 5. Undecidability theorem; 6. Formal theories; 7. Extensionality in lambda-calculus; 8. Extensionality in CL; 9. Correspondence between lambda and CL; 10. Simple typing, Church-style; 11. Simple typing, Curry-style in CL; 12. Simple typing, Curry-style in lambda; 13. Generalizations of typing; 14. Models of CL; 15. Models of lambda-calculus; 16. Scott's D and other models; Appendix A1. Bound variables and alpha-conversion; Appendix A2. Confluence proofs; Appendix A3. Strong normalization proofs; Appendix A4. Care of your pet combinator; Appendix A5. Answers to starred exercises; Bibliography; Index. | |
650 | 0 | _aLambda calculus. | |
650 | 0 | _aCombinatory logic. | |
700 | 1 | _aSeldin, J. P. | |
942 |
_aIMAR _cCART _k511.6 _sEP |
||
999 |
_c31629 _d31629 |