Amazon cover image
Image from Amazon.com

Expander families and Cayley graphs : a beginner's guide / Mike Krebs and Anthony Shaheen.

By: Contributor(s): Publication details: New York : Oxford University Press, c2011.Description: xxiv, 258 p. : ill. ; 25 cmISBN:
  • 978-0-19-976711-3
Subject(s): DDC classification:
  • 511.5
LOC classification:
  • QA166.145
Other classification:
Contents:
Machine generated contents note: -- Preface -- Notations and conventions -- Introduction -- Part 1. Basics -- Chapter 1. Graph eigenvalues and the isoperimetric constant -- Chapter 2. Subgroups and quotients -- Chapter 3. The Alon-Boppana theorem -- Part 2. Combinatorial techniques -- Chapter 4. Diameters of Cayley graphs and expander families -- Chapter 5. Zig-zag products -- Part 3. Representation-theoretic techniques -- Chapter 6. Representations of Finite Groups -- Chapter 7. Representation theory and eigenvalues of Cayley graphs -- Chapter 8. Kazhdan constants -- Appendix A. Linear algebra -- Appendix B. Asymptotic analysis of functions -- Bibliography -- Index.
Summary: "The theory of expander graphs is a rapidly developing topic in mathematics and computer science, with applications to communication networks, error-correcting codes, cryptography, complexity theory, and much more. Expander Families and Cayley Graphs: A Beginner's Guide is a comprehensive introduction to expander graphs, designed to act as a bridge between classroom study and active research in the field of expanders. It equips those with little or no prior knowledge with the skills necessary to both comprehend current research articles and begin their own research. Central to this book are four invariants that measure the quality of a Cayley graph as a communications network-the isoperimetric constant, the second-largest eigenvalue, the diameter, and the Kazhdan constant. The book poses and answers three core questions: How do these invariants relate to one another? How do they relate to subgroups and quotients? What are their optimal values/growth rates? Chapters cover topics such as: ℗ʺ Graph spectra ℗ʺ A Cheeger-Buser-type inequality for regular graphs ℗ʺ Group quotients and graph coverings ℗ʺ Subgroups and Schreier generators ℗ʺ Ramanujan graphs and the Alon-Boppana theorem ℗ʺ The zig-zag product and its relation to semidirect products of groups ℗ʺ Representation theory and eigenvalues of Cayley graphs ℗ʺ Kazhdan constants The only introductory text on this topic suitable for both undergraduate and graduate students, Expander Families and Cayley Graphs requires only one course in linear algebra and one in group theory. No background in graph theory or representation theory is assumed. Examples and practice problems with varying complexity are included, along with detailed notes on research articles that have appeared in the literature. Many chapters end with suggested research topics that are ideal for student projects"--Summary: "Expander families enjoy a wide range of applications in mathematics and computer science, and their study is a fascinating one in its own right. Expander Families and Cayley Graphs: A Beginner's Guide provides an introduction to the mathematical theory underlying these objects"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Date due Barcode
Carti IMAR 511.5-KRE (Browse shelf(Opens below)) 1 Checked out 03/26/2025 0036552

eng

Bibliografie p. 247
Index p. 253

Machine generated contents note: -- Preface -- Notations and conventions -- Introduction -- Part 1. Basics -- Chapter 1. Graph eigenvalues and the isoperimetric constant -- Chapter 2. Subgroups and quotients -- Chapter 3. The Alon-Boppana theorem -- Part 2. Combinatorial techniques -- Chapter 4. Diameters of Cayley graphs and expander families -- Chapter 5. Zig-zag products -- Part 3. Representation-theoretic techniques -- Chapter 6. Representations of Finite Groups -- Chapter 7. Representation theory and eigenvalues of Cayley graphs -- Chapter 8. Kazhdan constants -- Appendix A. Linear algebra -- Appendix B. Asymptotic analysis of functions -- Bibliography -- Index.

"The theory of expander graphs is a rapidly developing topic in mathematics and computer science, with applications to communication networks, error-correcting codes, cryptography, complexity theory, and much more. Expander Families and Cayley Graphs: A Beginner's Guide is a comprehensive introduction to expander graphs, designed to act as a bridge between classroom study and active research in the field of expanders. It equips those with little or no prior knowledge with the skills necessary to both comprehend current research articles and begin their own research. Central to this book are four invariants that measure the quality of a Cayley graph as a communications network-the isoperimetric constant, the second-largest eigenvalue, the diameter, and the Kazhdan constant. The book poses and answers three core questions: How do these invariants relate to one another? How do they relate to subgroups and quotients? What are their optimal values/growth rates? Chapters cover topics such as: ℗ʺ Graph spectra ℗ʺ A Cheeger-Buser-type inequality for regular graphs ℗ʺ Group quotients and graph coverings ℗ʺ Subgroups and Schreier generators ℗ʺ Ramanujan graphs and the Alon-Boppana theorem ℗ʺ The zig-zag product and its relation to semidirect products of groups ℗ʺ Representation theory and eigenvalues of Cayley graphs ℗ʺ Kazhdan constants The only introductory text on this topic suitable for both undergraduate and graduate students, Expander Families and Cayley Graphs requires only one course in linear algebra and one in group theory. No background in graph theory or representation theory is assumed. Examples and practice problems with varying complexity are included, along with detailed notes on research articles that have appeared in the literature. Many chapters end with suggested research topics that are ideal for student projects"--

"Expander families enjoy a wide range of applications in mathematics and computer science, and their study is a fascinating one in its own right. Expander Families and Cayley Graphs: A Beginner's Guide provides an introduction to the mathematical theory underlying these objects"--

There are no comments on this title.

to post a comment.

Powered by Koha