Amazon cover image
Image from Amazon.com

Classification of higher dimensional algebraic varieties Christopher D. Hacon, Sandor J. Kovacs

By: Contributor(s): Series: Oberwolfach SeminarsPublication details: Basel ; Boston : Birkhauser, c2010.Description: x, 208 p. : ill. ; 24 cmISBN:
  • 9783034602891 (alk. paper)
  • 3034602898 (alk. paper)
Subject(s): DDC classification:
  • 516.353
LOC classification:
  • QA564
Summary: This book focuses on recent advances in the classification of complex projective varieties. It is divided into two parts. The first part gives a detailed account of recent results in the minimal model program. In particular, it contains a complete proof of the theorems on the existence of flips, on the existence of minimal models for varieties of log general type and of the finite generation of the canonical ring. The second part is an introduction to the theory of moduli spaces. It includes topics such as representing and moduli functors, Hilbert schemes, the boundedness, local closedness and separatedness of moduli spaces and the boundedness for varieties of general typeSummary: The book is aimed at advanced graduate students and researchers in algebraic geometry
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Date due Barcode
Carti IMAR 516.353-HAC (Browse shelf(Opens below)) 1 Available 0036433

eng

Bibliografie p. 185
Index p. 203

This book focuses on recent advances in the classification of complex projective varieties. It is divided into two parts. The first part gives a detailed account of recent results in the minimal model program. In particular, it contains a complete proof of the theorems on the existence of flips, on the existence of minimal models for varieties of log general type and of the finite generation of the canonical ring. The second part is an introduction to the theory of moduli spaces. It includes topics such as representing and moduli functors, Hilbert schemes, the boundedness, local closedness and separatedness of moduli spaces and the boundedness for varieties of general type

The book is aimed at advanced graduate students and researchers in algebraic geometry

There are no comments on this title.

to post a comment.

Powered by Koha