Representations and techniques for 3D object recognition and scene interpretation (Record no. 24497)

MARC details
000 -LEADER
fixed length control field 05159 a2200433 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781608457281 (pbk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781608457298 (ebk.)
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.2200/S00370ED1V01Y201107AIM015
035 ## - SYSTEM CONTROL NUMBER
System control number
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.37
090 ## - LOCALLY ASSIGNED LC-TYPE CALL NUMBER (OCLC); LOCAL CALL NUMBER (RLIN)
-- 24787
-- 24787
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Hoiem, Derek
245 10 - TITLE STATEMENT
Title Representations and techniques for 3D object recognition and scene interpretation
Statement of responsibility, etc. Derek Hoiem, Silvio Savarese
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. San Rafael, California
Name of publisher, distributor, etc. Morgan & Claypool
Date of publication, distribution, etc. c2011
300 ## - PHYSICAL DESCRIPTION
Extent xxi, 147 p.
Other physical details ill
490 1# - SERIES STATEMENT
Series statement Synthesis lectures on artificial intelligence and machine learning
Volume/sequential designation 15
546 ## - LANGUAGE NOTE
Language note eng
500 ## - GENERAL NOTE
General note Part of: Synthesis digital library of engineering and computer science
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 1. Background on 3D scene models -- 1.1 Theories of vision -- 1.1.1 Depth and surface perception -- 1.1.2 Awell-organized scene -- 1.2 Early computer vision and AI -- 1.3 Modern computer vision
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 2. Single-view geometry -- 2.1 Consequences of projection -- 2.2 Perspective projection with pinhole camera: 3D to 2D -- 2.3 3D measurement from a 2D image -- 2.4 Automatic estimation of vanishing points -- 2.5 Summary of key concepts --
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 3. Modeling the physical scene -- 3.1 Elements of physical scene understanding -- 3.1.1 Elements -- 3.1.2 Physical interactions -- 3.2 Representations of scene space -- 3.2.1 Scene-level geometric description -- 3.2.2 Retinotopic maps -- 3.2.3 Highly structured 3D models -- 3.2.4 Loosely structured models: 3D point clouds and meshes -- 3.3 Summary --
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 4. Categorizing images and regions -- 4.1 Overview of image labeling -- 4.2 Guiding principles -- 4.2.1 Creating regions -- 4.2.2 Choosing features -- 4.2.3 Classifiers -- 4.2.4 Datasets -- 4.3 Image features -- 4.3.1 Color -- 4.3.2 Texture -- 4.3.3 Gradient-based -- 4.3.4 Interest points and bag of words -- 4.3.5 Image position -- 4.3.6 Region shape -- 4.3.7 Perspective -- 4.4 Summary --
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 5. Examples of 3D scene interpretation -- 5.1 Surface layout and automatic photo pop-up -- 5.1.1 Intuition -- 5.1.2 Geometric classes -- 5.1.3 Approach to estimate surface layout -- 5.1.4 Examples of predicted surface layout -- 5.1.5 3D reconstruction using the surface layout -- 5.2 Make3D: depth from an image -- 5.2.1 Predicting depth and orientation -- 5.2.2 Local constraints and priors -- 5.2.3 Results -- 5.3 The room as a box -- 5.3.1 Algorithm -- 5.3.2 Results -- 5.4 Summary --
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Part II. Recognition of 3D objects from an image --
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 6. Background on 3D recognition -- 6.1 Human vision theories -- 6.1.1 The Geon theory -- 6.1.2 2D-view specific templates -- 6.1.3 Aspect graphs -- 6.1.4 Computational theories by 3D alignment -- 6.1.5 Conclusions -- 6.2 Early computational models --
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 7. Modeling 3D objects -- 7.1 Overview -- 7.2 Single instance 3D category models -- 7.2.1 Single instance 2D view-template models -- 7.2.2 Single instance 3D models -- 7.3 Mixture of single-view models -- 7.4 2-1/2D layout models -- 7.4.1 2-1/2D layout by ISM models -- 7.4.2 2-1/2D layout by view-invariant parts -- 7.4.3 2-1/2D hierarchical layout models -- 7.4.4 2-1/2D layout by discriminative aspects -- 7.5 3D layout models -- 7.5.1 3D layout models constructed upon 3D prototypes -- 7.5.2 3D layout models without 3D prototypes --
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 8. Recognizing and understanding 3D objects -- 8.1 Datasets -- 8.2 Supervision and initialization -- 8.3 Modeling, learning and inference strategies --
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 9. Examples of 2D 1/2 layout models -- 9.1 Linkage structure of canonical parts -- 9.1.1 The view-morphing formulation -- 9.1.2 Supervision -- 9.2 View-morphing models -- 9.2.1 Learning the model -- 9.2.2 Detection and viewpoint classification -- 9.2.3 Results -- 9.3 Conclusions --
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Part III. Integrated 3D scene interpretation --
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 10. Reasoning about objects and scenes -- 10.1 Objects in perspective -- 10.1.1 Object size -- 10.1.2 Appearance features -- 10.1.3 Interaction between objects and scene via object scale and pose -- 10.2 Scene layout -- 10.3 Occlusion -- 10.4 Summary --
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 11. Cascades of classifiers -- 11.1 Intrinsic images revisited -- 11.1.1 Intrinsic image representation -- 11.1.2 Contextual interactions -- 11.1.3 Training and inference -- 11.1.4 Experiments -- 11.2 Feedback-enabled cascaded classification models -- 11.2.1 Algorithm -- 11.2.2 Experiments -- 11.3 Summary --
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 12. Conclusion and future directions -- Bibliography -- Authors' biographies
520 3# - SUMMARY, ETC.
Summary, etc. One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Computer vision
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Three-dimensional imaging
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Savarese, Silvio
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Synthesis lectures on artificial intelligence and machine learning
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Institution code [OBSOLETE] IMAR
Koha item type Carti
Serial record flag RM
-- EP
Call number prefix 006.37
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Date acquired Cost, normal purchase price Inventory number Total checkouts Total renewals Full call number Barcode Date due Date last seen Date last checked out Copy number Price effective from Koha item type
        IMAR IMAR 03/21/2024 148.00 Mcc 9272 2 1 II 36777 0027310 12/29/2026 03/29/2024 03/29/2024 1 03/21/2024 Carti

Powered by Koha